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Isothermal compression data derived from shock-wave and static-compression measurements on metals 
exhibit a nearly precise linear relation between the logarithm of the bulk modulus and the specific volume 
up to volume changes of 40%. As a result, solid isotherms can be accurately fitted or extrapolated in this 
range by means of two parameter functions of either a Birch or a modified Tait form. 

I. INTRODUCTION 

The isothermal compression curve of metallic 
solids can be represented in a strikingly simple 
manner up to specific volume changes of 40% or 
up to pressures of nearly twice the normal bulk 
modulus. The observation is based on a more 
detailed treatment of static-compression measure
ments of some very soft metals (the alkalis) and 
isotherms calculated from shock Hugoniot data on 
a wide variety of metals. 

The simple behavior of the isotherms of metals 
is evident when the logarithm of the isothermal 
bulk modulus B is plotted against volume changes 
6.. vi vo as shown in Fig. 1. The use of volume as 
the abscissa rather than pressure was suggested 
by the simple linear dependence previously found 
for the melting temperature.1 Compared with the 
pressure PT(V), the log of the isothermal bulk 
modulus BT(V), which can be cal~ulated from shock 
data with virtually the same accuracy as the pres
sure, is a more appropriate quantity to fit because 
of its relatively small variation over the large 
range of shock compreSSion data. For this reason 
it is easier to recognize the advantages of a partic
ular method of fitting compression data. Further
more, a good fit to the volume dependence of the 
bulk modulus will correspond to an even better fit 
to the pressure along an isotherm (isothermal 
pressure). Thus, the nearly linear relation ob
served in Fig. 1 between 10glO B and 6.. vi vo shows 
clearly that an extremely accurate two-parameter 
fit to isothermal pressures is possible over a range 
of 40% in volume changes. 

7 

The information for Fig. 1 was indirectly ob
tained from experimental data by special methods 
in both the cases of static- and dynamic-compres
sion data. These methods are described in Sec. II. 
Various accurate ways of fitting the curves of Fig. 
1 and comparisons with previous methods are made 
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FIG. 1. Isothermal bulk modulus BT vs volume change 
of metals as calculated from shock-wave and static-com
pression data (see text). 
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in Sec. m. Finally, the applicability of this be
havior to other types of solids is discussed in Sec. 
IV. 

ll. DETERMINATION OF ISOTHERMAL BULK MODULUS 
FROM COMPRESSION DATA 

The bulk of the data exhibited in Fig. 1 is de
rived from shock-velocity measureme.lts which re
mains the only method of obtaining compressions 
in normal solids of 30% or more. These data have 
previously been shown to be in excellent agreement 
with static -compression data. 2 Figure 1 contains 
nearly all the available shock-wave results3 for 
metals. In order to reduce the clutter of the 
graph, a few metals have been left out: Au, Ni, 
and Cr which are in the Fe group and Re which lies 
in the W group. Metals for which there is little or 
no data are pure Ai, Mn, Ga, Tc, RU, and Os plus 
some heavy elements. Shock data for a rrumber of 
metals (Na, K, Rb, Hg, Te) lie entirely in the 
liquid phase, and are not included. In addition a 
number of metals, in particular the rare earths, 
the alkaline earths, and first transition elements 
below Ca and Se, exhibit phase changes at rela
tively low compressions. Their data have not 
been included be~ause the range of compression 
in the low-pressure phases are too small to be of 
use here. Three metals having low-pressure 
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phase tranSitions, Zr, Ti, and Hf, are included. 
The O-deg isotherms plotted in Fig. 1 are de

rived from shock-velocity data by standard meth
ods.4 Shock-velocity measurements on solids can 
nearly always be accurately fit by a linear rela- · 
tion between shock velocity Us and material veloc
ity Up; that is Us = C + SUp. The pressure and 
modulus along the Hugoniot, PH and B H, are then 

PH=POUs Up= (1-SX)2 
~V --, 
Vo 

(1) x= 

B= VdPH-B (1-x)(1+sz) 
H - - dV - 0 (1 _ SX)3 (2) 

where Po and Bo are the normal density and bulk 
modulus of the solid. Assuming that the solid 
obeys a Mie -Grlineisen equation of state and fur
ther that Grlineisen's y is related in one of several 
plausible ways to the shape of the O-deg isotherm 
PK(V), the Hugoniot PH(V) then determines the 
O-deg isotherm. Using standard theories, values 
of BK ( V) were calculated for Mg as a typical ex
ample and compared with BH ( V) as shown in Fig. 
2. Nominal error bars in the experimental de
termination of BH(V) are also drawn to show that 
the differences between BK and BH become signif
icant beyond 20% compression. The theory for y( V) 
most often chosen to derive equation-of-state 
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properties from shock data is that of Dugdale
MacDonald (DM) and this was used for the calcula
tions of Fig. 1. Figure 2 shows however that 
each of the theories for y gives a straight line over 
a large range of t:. vi vo with a relatively small 
variation in slopes (- 10%) between theories. 

In the cases of the very soft alkali metals, direct 
static isothermal compression measurements are 
available and are to be preferred. The reason is 
that, except for Li, the alkali-metal shock data 
pOints are in the liquid phase and cannot be used 
to derive an equation of state for the solid. For 
this reason, we show results from static measure
ments for the alkali metals in Fig. 1 and reduced 
results from shock measurements for the remain
ing metals. 

Room-temperature measurement of compression 
for the alkali metals have been reported by Vaidya 
et al. 5 Volumes were determined relative to gold 
from piston displacement measurements. Details 
of the technique are reported in Ref. 2 and 5. 
Bulk-modulus values were determined from the 
original piston displacement data by graphical 
techniques. Except for the relatively small com
pression of gold, no equation of state or other 
functional form enters the data reduction scheme. 
This is a unique feature of these bulk-modulus val
ues. 

The 5-kbar-spaced data of Vaidya et al. 5 were 
plotted, run by run, on a large scale. Graphing 
accuracy was typically better than ± 0.05% of the 
volume change at 45 kbar (about ± 0.0002 in 
t:. Vi Vo). Smooth curves were drawn through these 
points with the aid of a large-radius flexible · 
spline. Volumes were read off at l-kbar intervals. 
The bulk modulus was then calCulated from 
B= - (Vl Vo)[t:.pl(t:. vivo)], where vivo is the mean 
volume in the interval. t:.P was taken at 1-, 3-, 
and 5-kbar intervals in search of smooth values of 
B. Pressure intervals were moved in l-kbar steps 
over the 45-kbar range. 

Relevant curvatures were sufficiently small that 
no systematic trend was found in the bulk modulus 
values as the pressure interval was increased 
from 1 to 5 kbar. 

Straight lines of the form 

lnB= lnBo + O!(t:. Vi Vo) 
were fit by least squares to each of the original 
runs over an appropriate volume range. Lithium 
was fit to a compression of O. 15, rubidium to 0.34, 
and sodium and potassium over the full range of 
the data. One representative data set is shown 
with the fit line for each material in Fig. 3. 
Weighted averages of the slopes and intercepts 
were calculated for each material. The weighting 
factor was the inverse square of the standard de
viations in each least-squares fit. The average 

intercepts give Li:Bo=1l7.4± 0.9; Na:Bo=59.9 
±0.5; K: Bo= 31. o± O. 2; and Rb: Bo= 24. 9 ± O. 3. 
Scatter of the Bo values gives an uncertainty of 
about 1% in each case. Agreement with the values 
found by a modified Murnahan equation2 fit to the 
original data are excellent,S within 1 kbar in every 
case. This accord lends strong credence to the 
validity of the straight-line fit over the selected 
volume ranges. 

The average slopes are Li: O! = 3. 62 ± 0.02; 
Na:0!=4.06± 0.07; K:0!=3.93±0.02; andRb: 
0!=4.12± 0.04. These values are remarkably 
similar. Except for Li they lie nearly within their 
mutual uncertainties. 

These average straight lines are shown in Fig. 
1 for comparison with the O-deg isothermal data 
reduced from the shock Hugoniots. 

Ill . MATHEMATICAL FITS 

A Simple linear representation, like (1), of the 
data on Fig. 1 does not lead to a completely satis
factory formula for the isotherms. That is, the 
formula 

(3) 

cannot be integrated to obtain PT(V) in terms of 
Simple functions. However, a slight modification 
of Eq. (3), 

can be derived from the standard Tait equation 
(5)6 : 
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FIG. 3. Room-temperature isothermal bulk modulus 
vs volume change of the alkali metals from static-com
pression data-representative examples. 
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aAVI Vo=ln[l + a(P -Po}/Bo 1, 

P=Po+ ~ (eadv/vo -1) 
a ' 

(5) 

for an isotherm starting at pressure Po with an 
initial bulk modulus of Bo. A plot of Eq. (4), how
ever, shows lnBT to be increasing somewhat less 
than linearly at the higher compressions where the 
shock isotherms increases more quickly than a 
linear rate. Moreover, at still higher compres
sions Eq. (4) is qualitatively unrealistic since it 
predicts that BT goes through a maximum and de
creases to zero at infinite compression. However, 
a further modification of the Tait equation (5) iF 
satisfactory in these regards: 

P=P +~ (~ eadV/Vo_1) • 
o a+1 V 

(6) 

The bulk modulus derived from (6) ~/ _ _ '+ .J..-~ 
, u~- .... df't ~1' 

a + Vol V ad V /V (T) (7) 
a+1 e 0 1, 

is seen in Fig. (2b) to accurately represent the DM 
curve to Avlvo- 0.4. This means that the simple 
expression (6) for the isothermal pressure will fit 
shock calculations to very high accuracy. 

For comparison Fig. (2b) also shows calculations 
for a number of other two-parameter formulas 
commonly used to represent high-pressure com
pression d.ata. In order to compare the accuracies 
with which various formulas can be extrapolated 
to high pressure, all functions are started with the 
same initial values and slopes appropriate to Mg. 
The various functions are 7 

P
T 

=! Bo 7]5/3(7]2/3 - 1) [1 - t (4 - Bo'){7]2/3 - 1)] , 

71/2/3 - 5 
BT = 3(1/2/3 -1) 

B' BT = Bo 1/ 0 , 

P
T 

- ~ (4 - BO')1/2/3(1/2/3 - 1) , 

Birch (B) 

BT = Bo[l + 1 Bo' (1/5/3 -1) 1, 
Murnaghan (M) 

Keane (K1) 

where 1/ = volv. There are extensions of each of 
these equations involving additional parameters 
which could be used to fit the isothermal data with 
greater precision but the additional parameters 
can never be measured with sufficient accuracy at 
low pressures to be useful in extrapolations. The 
Keane formula discussed by Anderson7 is actually 
a three-parameter equation of which the above 
Kl equation is a special case corresponding to an 
ideal-gas behavior at infinite compression. 

The superiority of both the modified Tait and 
Birch fits to the Mg isotherm is evident. The two
parameter Murnaghan equat-ion is actually a much 
better fit to the uncorrected Hugoniot, Bn(V), a 

fact that has been noted on previous occasions and 
mistakenly thought to justify its use for extrapolat
ing isotherms to high pressure. The differences 
between the Birch and modified Tl fit to the Mg 
isotherm are also seen to be within the uncertain
ties of the experimental data and the thermal cor
rections to the Hugoniot. This is also true for all 
the other metals shown in Fig. 1. Although it is 
therefore not possible to detect a strong preference 
for either of these forms in the experimental data, 
the modified Tait, Eqs. (6) and (7) are the simpler 
functions. 

On the other hand the Birch equation is derived 
systematically from the theory of finite strain in 
which the pressure is expanded in powers of an 
Eulerian-strain variable x= (vo/ V)2/3 -1. It was 
long ago recognized that coefficient of the second 
power of x was generally small for metals. The 
excellence of the bulk-modulus fits reported here 
indicates that the coefficient of the ,(3 term is also 
small and confirms the indication that the Eulerian
strain expansion for the pressur.e has a large ra
dius of convergence. 

[v. APPLICATIONS 

The nearly linear dependence of the log of the 
bulk modulus on volume appears to be as universal 
in metals as the linear velocity relations found in 
the shock-wave data. It is interesting to speculate 
on. the possibility that InBT is linear in volume for 
a single phase of any solid. In the case of metals 
the linear volume dependence is apparently the re
suit of a linear shOCk-velocity relation combined 
with thermal corrections represented by a Griin
eisen 'YG which decreases with volume. The meth
od used here for calculating 'Y and its volume de
pendence is well based in theory and is in approxi
mate agreement with experimental data on met
als. 8 However, for polyatomic solids both this 
theory and experimental data are inadequate. 
Nevertheless, for more complicated solids, the 
decrease of YG with compression may be expected 
according to the following more qualitative argu
ments. 

The intermolecular forces which govern the 
compressibility of a solid and also its thermal 
pressure are believed in all cases to be composed 
of weak long-range attractive forces plus short
range repulsive forces. It is readily shown that 
for a simple power-law intermolecular potential 
r-n

, Yc = i (n + 2). However when a second attrac
tive potential is added to the repulsive power law, 
it effectively cuts off the repulsion at a finite ra
dius. The effect is the same as increasing the 
exponent n or Yc above the value characteristic of 
the repulsive part of the potential. Therefore as 
one compresses the solid, the effect of the attrac-
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tive potential is reduced and Yc will decrease. 
This behavior seems to be characteristic of all 
metals. Thus to the extent that such force models 
are realistic for more complicated polyatomic 
solids, one may expect a similar type of behavior 
in their Yc. However in the latter materials a 
quantitative estimate of the decrease is difficult. 

There are two practical limitations to the use of 
these two-parameter fits for extrapolating low
pressure data on more complicated solids. The 
first is the frequent appearance of high-pressure 

·Work performed under the auspices of the U. S. Atomic 
Energy Commission. 
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